quimb.core

Core functions for manipulating quantum objects.

Attributes

_NUM_THREAD_WORKERS

_NUMBA_CACHE

_NUMBA_PAR

njit

Numba no-python jit, but obeying cache setting.

pnjit

Numba no-python jit, but obeying cache setting, with optional parallel

vectorize

Numba vectorize, but obeying cache setting.

pvectorize

Numba vectorize, but obeying cache setting, with optional parallel

_COMPLEX_DTYPES

_DOUBLE_DTYPES

_DTYPE_MAP

_cmplx_sigs

_nb_complex_seq

_nb_complex_par

_sbtrct_sigs

_nb_subtract_update_seq

_nb_subtract_update_par

_divd_sigs

_nb_divide_update_seq

_nb_divide_update_par

_SPARSE_CONSTRUCTORS

_EXPEC_METHODS

expec

Alias for expectation().

normalize_

chop_

qu

Alias of quimbify().

ket

Convert an object into a ket.

bra

Convert an object into a bra.

dop

Convert an object into a density operator.

sparse

Convert an object into sparse form.

eye

Alias for identity().

speye

Sparse identity.

_dim_mapper_methods

nmlz

Alias for normalize().

tr

Alias for trace().

ptr

Alias for partial_trace().

Classes

CacheThreadPool

qarray

Thin subclass of numpy.ndarray with some convenient quantum

Functions

prod(iterable)

get_thread_pool([num_workers])

par_reduce(fn, seq[, nthreads])

Parallel reduce.

make_immutable(mat)

Make array read only, in-place.

ensure_qarray(fn)

Decorator that wraps output as a qarray.

realify_scalar(x[, imag_tol])

realify(fn[, imag_tol])

Decorator that drops fn's output imaginary part if very small.

zeroify(fn[, tol])

Decorator that rounds fn's output to zero if very small.

common_type(*arrays)

Quick compute the minimal dtype sufficient for arrays.

upcast(fn)

Decorator to make sure the types of two numpy arguments match.

dag(qob)

Conjugate transpose.

isket(qob)

Checks if qob is in ket form -- an array column.

isbra(qob)

Checks if qob is in bra form -- an array row.

isop(qob)

Checks if qob is an operator.

isvec(qob)

Checks if qob is row-vector, column-vector or one-dimensional.

issparse(qob)

Checks if qob is explicitly sparse.

isdense(qob)

Checks if qob is explicitly dense.

isreal(qob, **allclose_opts)

Checks if qob is approximately real.

allclose_sparse(A, B, **allclose_opts)

isherm(qob, **allclose_opts)

Checks if qob is hermitian.

ispos(qob[, tol])

Checks if the dense hermitian qob is approximately positive

_nb_complex_base(real, imag)

complex_array(real, imag)

Accelerated creation of complex array.

mul_dense(x, y)

Numba-accelerated element-wise multiplication of two dense matrices.

mul(x, y)

Element-wise multiplication, dispatched to correct dense or sparse

_nb_subtract_update_base(X, c, Z)

subtract_update_(X, c, Y)

Accelerated inplace computation of X -= c * Y. This is mainly

_nb_divide_update_base(X, c)

divide_update_(X, c, out)

Accelerated computation of X / c into out.

_dot_csr_matvec_prange(data, indptr, indices, vec, out)

par_dot_csr_matvec(A, x)

Parallel sparse csr-matrix vector dot product.

dot_sparse(a, b)

Dot product for sparse matrix, dispatching to parallel for v large nnz.

dot(a, b)

Matrix multiplication, dispatched to dense or sparse functions.

vdot(a, b)

Accelerated 'Hermitian' inner product of two arrays. In other words,

rdot(a, b)

Real dot product of two dense vectors.

_l_diag_dot_dense_par(l, A, out)

l_diag_dot_dense(diag, mat)

Dot product of diagonal matrix (with only diagonal supplied) and dense

l_diag_dot_sparse(diag, mat)

Dot product of digonal matrix (with only diagonal supplied) and sparse

ldmul(diag, mat)

Accelerated left diagonal multiplication. Equivalent to

_r_diag_dot_dense_par(A, l, out)

r_diag_dot_dense(mat, diag)

Dot product of dense matrix and digonal matrix (with only diagonal

r_diag_dot_sparse(mat, diag)

Dot product of sparse matrix and digonal matrix (with only diagonal

rdmul(mat, diag)

Accelerated left diagonal multiplication.

_outer_par(a, b, out, m, n)

outer(a, b)

Outer product between two vectors (no conjugation).

explt(l, t)

Complex exponenital as used in solution to schrodinger equation.

_nb_kron_exp_seq(a, b, out, m, n, p, q)

_nb_kron_exp_par(a, b, out, m, n, p, q)

kron_dense(a, b[, par_thresh])

kron_sparse(a, b[, stype])

Sparse tensor (kronecker) product,

kron_dispatch(a, b[, stype])

Kronecker product of two arrays, dispatched based on dense/sparse and

sparse_matrix(data[, stype, dtype])

Construct a sparse matrix of a particular format.

expectation(a, b)

'Expectation' between a vector/operator and another vector/operator.

normalize(qob[, inplace])

Normalize a quantum object.

chop(qob[, tol, inplace])

Set small values of a dense or sparse array to zero.

quimbify(data[, qtype, normalized, chopped, sparse, ...])

Converts data to 'quantum' i.e. complex matrices, kets being columns.

infer_size(p[, base])

Infer the size, i.e. number of 'sites' in a state.

_trace_dense(op)

Trace of a dense operator.

_trace_sparse(op)

Trace of a sparse operator.

trace(mat)

Trace of a dense or sparse operator.

_identity_dense(d[, dtype])

Returns a dense, identity of given dimension d and type dtype.

_identity_sparse(d[, stype, dtype])

Returns a sparse, complex identity of order d.

identity(d[, sparse, stype, dtype])

Return identity of size d in complex format, optionally sparse.

_kron_core(*ops[, stype, coo_build, parallel])

Core kronecker product for a sequence of objects.

dynal(x, bases)

Generate 'dynamic decimal' for x given dims.

gen_matching_dynal(ri, rf, dims)

Return the matching dynal part of ri and rf, plus the first pair

gen_ops_maybe_sliced(ops, ix)

Take ops and slice the first few, according to the length of ix

kron(*ops[, stype, coo_build, parallel, ownership])

Tensor (kronecker) product of variable number of arguments.

kronpow(a, p, **kron_opts)

Returns a tensored with itself p times

_find_shape_of_nested_int_array(x)

Take a n-nested list/tuple of integers and find its array shape.

_dim_map_1d(sza, coos)

_dim_map_1dtrim(sza, coos)

_dim_map_1dcyclic(sza, coos)

_dim_map_2dcyclic(sza, szb, coos)

_dim_map_2dtrim(sza, szb, coos)

_dim_map_2d(sza, szb, coos)

_dim_map_nd(szs, coos[, cyclic, trim])

dim_map(dims, coos[, cyclic, trim])

Flatten 2d+ dimensions and coordinates.

_dim_compressor(dims, inds)

Helper function for dim_compress that does the heavy lifting.

dim_compress(dims, inds)

Compress neighbouring subsytem dimensions.

ikron(ops, dims, inds[, sparse, stype, coo_build, ...])

Tensor an operator into a larger space by padding with identities.

_permute_dense(p, dims, perm)

Permute the subsytems of a dense array.

_permute_sparse(a, dims, perm)

Permute the subsytems of a sparse matrix.

permute(p, dims, perm)

Permute the subsytems of state or opeator.

pkron(op, dims, inds, **ikron_opts)

Advanced, padded tensor product.

ind_complement(inds, n)

Return the indices below n not contained in inds.

itrace(a[, axes])

General tensor trace, i.e. multiple contractions, for a dense array.

_partial_trace_dense(p, dims, keep)

Perform partial trace of a dense matrix.

_trace_lose(p, dims, lose)

Simple partial trace where the single subsytem at lose

_trace_keep(p, dims, keep)

Simple partial trace where the single subsytem

_partial_trace_simple(p, dims, keep)

Simple partial trace made up of consecutive single subsystem partial

partial_trace(p, dims, keep)

Partial trace of a dense or sparse state.

csr_mulvec_wrap(fn)

Dispatch sparse csr-vector multiplication to parallel method.

sp_mulvec_wrap(fn)

Scipy sparse doesn't call __array_finalize__ so need to explicitly

Module Contents

quimb.core.prod(iterable)
quimb.core._NUM_THREAD_WORKERS
quimb.core._NUMBA_CACHE
quimb.core._NUMBA_PAR
quimb.core.njit

Numba no-python jit, but obeying cache setting.

quimb.core.pnjit

Numba no-python jit, but obeying cache setting, with optional parallel target, depending on environment variable ‘QUIMB_NUMBA_PARALLEL’.

quimb.core.vectorize

Numba vectorize, but obeying cache setting.

quimb.core.pvectorize

Numba vectorize, but obeying cache setting, with optional parallel target, depending on environment variable ‘QUIMB_NUMBA_PARALLEL’.

class quimb.core.CacheThreadPool(func)[source]

Bases: object

__call__(num_threads=None)[source]
quimb.core.get_thread_pool(num_workers=None)
quimb.core.par_reduce(fn, seq, nthreads=_NUM_THREAD_WORKERS)[source]

Parallel reduce.

Parameters:
  • fn (callable) – Two argument function to reduce with.

  • seq (sequence) – Sequence to reduce.

  • nthreads (int, optional) – The number of threads to reduce with in parallel.

Return type:

depends on fn and seq.

Notes

This has a several hundred microsecond overhead.

quimb.core.make_immutable(mat)[source]

Make array read only, in-place.

Parameters:

mat (sparse or dense array) – Matrix to make immutable.

class quimb.core.qarray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None)[source]

Bases: numpy.ndarray

Thin subclass of numpy.ndarray with some convenient quantum linear algebra related methods and attributes (.H, &, etc.), and matrix-like preservation of at least 2-dimensions so as to distiguish kets and bras.

property H
property A
__array__()[source]
__and__(other)[source]
normalize(inplace=True)[source]
nmlz(inplace=True)[source]
chop(inplace=True)[source]
tr()[source]
partial_trace(dims, keep)[source]
ptr(dims, keep)[source]
__str__()[source]

Return str(self).

__repr__()[source]

Return repr(self).

quimb.core.ensure_qarray(fn)[source]

Decorator that wraps output as a qarray.

quimb.core.realify_scalar(x, imag_tol=1e-12)[source]
quimb.core.realify(fn, imag_tol=1e-12)[source]

Decorator that drops fn’s output imaginary part if very small.

quimb.core.zeroify(fn, tol=1e-14)[source]

Decorator that rounds fn’s output to zero if very small.

quimb.core._COMPLEX_DTYPES
quimb.core._DOUBLE_DTYPES
quimb.core._DTYPE_MAP
quimb.core.common_type(*arrays)[source]

Quick compute the minimal dtype sufficient for arrays.

quimb.core.upcast(fn)[source]

Decorator to make sure the types of two numpy arguments match.

quimb.core.dag(qob)[source]

Conjugate transpose.

quimb.core.isket(qob)[source]

Checks if qob is in ket form – an array column.

quimb.core.isbra(qob)[source]

Checks if qob is in bra form – an array row.

quimb.core.isop(qob)[source]

Checks if qob is an operator.

quimb.core.isvec(qob)[source]

Checks if qob is row-vector, column-vector or one-dimensional.

quimb.core.issparse(qob)[source]

Checks if qob is explicitly sparse.

quimb.core.isdense(qob)[source]

Checks if qob is explicitly dense.

quimb.core.isreal(qob, **allclose_opts)[source]

Checks if qob is approximately real.

quimb.core.allclose_sparse(A, B, **allclose_opts)[source]
quimb.core.isherm(qob, **allclose_opts)[source]

Checks if qob is hermitian.

Parameters:

qob (dense or sparse operator) – Matrix to check.

Return type:

bool

quimb.core.ispos(qob, tol=1e-15)[source]

Checks if the dense hermitian qob is approximately positive semi-definite, using the cholesky decomposition.

Parameters:

qob (dense operator) – Matrix to check.

Return type:

bool

quimb.core._nb_complex_base(real, imag)[source]
quimb.core._cmplx_sigs = ['complex64(float32, float32)', 'complex128(float64, float64)']
quimb.core._nb_complex_seq[source]
quimb.core._nb_complex_par
quimb.core.complex_array(real, imag)[source]

Accelerated creation of complex array.

quimb.core.mul_dense(x, y)[source]

Numba-accelerated element-wise multiplication of two dense matrices.

quimb.core.mul(x, y)[source]

Element-wise multiplication, dispatched to correct dense or sparse function.

Parameters:
  • x (dense or sparse operator) – First array.

  • y (dense or sparse operator) – Second array.

Returns:

Element wise product of x and y.

Return type:

dense or sparse operator

quimb.core._nb_subtract_update_base(X, c, Z)[source]
quimb.core._sbtrct_sigs = ['float32(float32, float32, float32)', 'float32(float32, float64, float32)', 'float64(float64,...
quimb.core._nb_subtract_update_seq[source]
quimb.core._nb_subtract_update_par
quimb.core.subtract_update_(X, c, Y)[source]

Accelerated inplace computation of X -= c * Y. This is mainly for Lanczos iteration.

quimb.core._nb_divide_update_base(X, c)[source]
quimb.core._divd_sigs = ['float32(float32, float32)', 'float64(float64, float64)', 'complex64(complex64, float32)',...
quimb.core._nb_divide_update_seq[source]
quimb.core._nb_divide_update_par
quimb.core.divide_update_(X, c, out)[source]

Accelerated computation of X / c into out.

quimb.core._dot_csr_matvec_prange(data, indptr, indices, vec, out)[source]
quimb.core.par_dot_csr_matvec(A, x)[source]

Parallel sparse csr-matrix vector dot product.

Parameters:
Returns:

Result of A @ x.

Return type:

dense vector

Notes

The main bottleneck for sparse matrix vector product is memory access, as such this function is only beneficial for pretty large matrices.

quimb.core.dot_sparse(a, b)[source]

Dot product for sparse matrix, dispatching to parallel for v large nnz.

quimb.core.dot(a, b)[source]

Matrix multiplication, dispatched to dense or sparse functions.

Parameters:
  • a (dense or sparse operator) – First array.

  • b (dense or sparse operator) – Second array.

Returns:

Dot product of a and b.

Return type:

dense or sparse operator

quimb.core.vdot(a, b)[source]

Accelerated ‘Hermitian’ inner product of two arrays. In other words, b here will be conjugated by the function.

quimb.core.rdot(a, b)[source]

Real dot product of two dense vectors.

Here, b will not be conjugated before the inner product.

quimb.core._l_diag_dot_dense_par(l, A, out)[source]
quimb.core.l_diag_dot_dense(diag, mat)[source]

Dot product of diagonal matrix (with only diagonal supplied) and dense matrix.

quimb.core.l_diag_dot_sparse(diag, mat)[source]

Dot product of digonal matrix (with only diagonal supplied) and sparse matrix.

quimb.core.ldmul(diag, mat)[source]

Accelerated left diagonal multiplication. Equivalent to numpy.diag(diag) @ mat, but faster than numpy.

Parameters:
  • diag (vector or 1d-array) – Vector representing the diagonal of a matrix.

  • mat (dense or sparse matrix) – A normal (non-diagonal) matrix.

Returns:

Dot product of the matrix whose diagonal is diag and mat.

Return type:

dense or sparse matrix

quimb.core._r_diag_dot_dense_par(A, l, out)[source]
quimb.core.r_diag_dot_dense(mat, diag)[source]

Dot product of dense matrix and digonal matrix (with only diagonal supplied).

quimb.core.r_diag_dot_sparse(mat, diag)[source]

Dot product of sparse matrix and digonal matrix (with only diagonal supplied).

quimb.core.rdmul(mat, diag)[source]

Accelerated left diagonal multiplication.

Equivalent to mat @ numpy.diag(diag), but faster.

Parameters:
  • mat (dense or sparse matrix) – A normal (non-diagonal) matrix.

  • diag (vector or 1d-array) – Vector representing the diagonal of a matrix.

Returns:

Dot product of mat and the matrix whose diagonal is diag.

Return type:

dense or sparse matrix

quimb.core._outer_par(a, b, out, m, n)[source]
quimb.core.outer(a, b)[source]

Outer product between two vectors (no conjugation).

quimb.core.explt(l, t)[source]

Complex exponenital as used in solution to schrodinger equation.

quimb.core._nb_kron_exp_seq(a, b, out, m, n, p, q)[source]
quimb.core._nb_kron_exp_par(a, b, out, m, n, p, q)[source]
quimb.core.kron_dense(a, b, par_thresh=4096)[source]
quimb.core.kron_sparse(a, b, stype=None)[source]

Sparse tensor (kronecker) product,

Output format can be specified or will be automatically determined.

quimb.core.kron_dispatch(a, b, stype=None)[source]

Kronecker product of two arrays, dispatched based on dense/sparse and also size of product.

quimb.core._SPARSE_CONSTRUCTORS
quimb.core.sparse_matrix(data, stype='csr', dtype=complex)[source]

Construct a sparse matrix of a particular format.

Parameters:
  • data (array_like) – Fed to scipy.sparse constructor.

  • stype ({'csr', 'csc', 'coo', 'bsr'}, optional) – Sparse format.

Returns:

Of format stype.

Return type:

scipy sparse matrix

quimb.core._EXPEC_METHODS
quimb.core.expectation(a, b)[source]

‘Expectation’ between a vector/operator and another vector/operator.

The ‘operator’ inner product between a and b, but also for vectors. This means that for consistency:

  • for two vectors it will be the absolute expec squared |<a|b><b|a>|, not <a|b>.

  • for a vector and an operator its will be <a|b|a>

  • for two operators it will be the Hilbert-schmidt inner product tr(A @ B)

In this way expectation(a, b) == expectation(dop(a), b) == expectation(dop(a), dop(b)).

Parameters:
  • a (vector or operator) – First state or operator - assumed to be ket if vector.

  • b (vector or operator) – Second state or operator - assumed to be ket if vector.

Returns:

x – ‘Expectation’ of a with b.

Return type:

float

quimb.core.expec[source]

Alias for expectation().

quimb.core.normalize(qob, inplace=True)[source]

Normalize a quantum object.

Parameters:
  • qob (dense or sparse vector or operator) – Quantum object to normalize.

  • inplace (bool, optional) – Whether to act inplace on the given operator.

Returns:

Normalized quantum object.

Return type:

dense or sparse vector or operator

quimb.core.normalize_
quimb.core.chop(qob, tol=1e-15, inplace=True)[source]

Set small values of a dense or sparse array to zero.

Parameters:
  • qob (dense or sparse vector or operator) – Quantum object to chop.

  • tol (float, optional) – Fraction of max(abs(qob)) to chop below.

  • inplace (bool, optional) – Whether to act on input array or return copy.

Returns:

Chopped quantum object.

Return type:

dense or sparse vector or operator

quimb.core.chop_
quimb.core.quimbify(data, qtype=None, normalized=False, chopped=False, sparse=None, stype=None, dtype=complex)[source]

Converts data to ‘quantum’ i.e. complex matrices, kets being columns.

Parameters:
  • data (dense or sparse array_like) – Array describing vector or operator.

  • qtype ({'ket', 'bra' or 'dop'}, optional) – Quantum object type output type. Note that if an operator is given as data and 'ket' or 'bra' as qtype, the operator will be unravelled into a column or row vector.

  • sparse (bool, optional) – Whether to convert output to sparse a format.

  • normalized (bool, optional) – Whether to normalise the output.

  • chopped (bool, optional) – Whether to trim almost zero entries of the output.

  • stype ({'csr', 'csc', 'bsr', 'coo'}, optional) – Format of output matrix if sparse, defaults to 'csr'.

Return type:

dense or sparse vector or operator

Notes

  1. Will unravel an array if 'ket' or 'bra' given.

  2. Will conjugate if 'bra' given.

  3. Will leave operators as is if 'dop' given, but construct one if vector given with the assumption that it was a ket.

Examples

Create a ket (column vector):

>>> qu([1, 2j, 3])
qarray([[1.+0.j],
        [0.+2.j],
        [3.+0.j]])

Create a single precision bra (row vector):

>>> qu([1, 2j, 3], qtype='bra', dtype='complex64')
qarray([[1.-0.j, 0.-2.j, 3.-0.j]], dtype=complex64)

Create a density operator from a vector:

>>> qu([1, 2j, 3], qtype='dop')
qarray([[1.+0.j, 0.-2.j, 3.+0.j],
        [0.+2.j, 4.+0.j, 0.+6.j],
        [3.+0.j, 0.-6.j, 9.+0.j]])

Create a sparse density operator:

>>> qu([1, 0, 0], sparse=True, qtype='dop')
<3x3 sparse matrix of type '<class 'numpy.complex128'>'
    with 1 stored elements in Compressed Sparse Row format>
quimb.core.qu[source]

Alias of quimbify().

quimb.core.ket

Convert an object into a ket.

quimb.core.bra

Convert an object into a bra.

quimb.core.dop

Convert an object into a density operator.

quimb.core.sparse

Convert an object into sparse form.

quimb.core.infer_size(p, base=2)[source]

Infer the size, i.e. number of ‘sites’ in a state.

Parameters:
  • p (vector or operator) – An array representing a state with a shape attribute.

  • base (int, optional) – Size of the individual states that p is composed of, e.g. this defauts 2 for qubits.

Returns:

Number of composite systems.

Return type:

int

Examples

>>> infer_size(singlet() & singlet())
4
>>> infersize(rand_rho(5**3), base=5)
3
quimb.core._trace_dense(op)[source]

Trace of a dense operator.

quimb.core._trace_sparse(op)[source]

Trace of a sparse operator.

quimb.core.trace(mat)[source]

Trace of a dense or sparse operator.

Parameters:

mat (operator) – Operator, dense or sparse.

Returns:

x – Trace of mat

Return type:

float

quimb.core._identity_dense(d, dtype=complex)[source]

Returns a dense, identity of given dimension d and type dtype.

quimb.core._identity_sparse(d, stype='csr', dtype=complex)[source]

Returns a sparse, complex identity of order d.

quimb.core.identity(d, sparse=False, stype='csr', dtype=complex)[source]

Return identity of size d in complex format, optionally sparse.

Parameters:
  • d (int) – Dimension of identity.

  • sparse (bool, optional) – Whether to output in sparse form.

  • stype (str, optional) – If sparse, what format to use.

Returns:

id – Identity operator.

Return type:

qarray or sparse matrix

quimb.core.eye[source]

Alias for identity().

quimb.core.speye

Sparse identity.

quimb.core._kron_core(*ops, stype=None, coo_build=False, parallel=False)[source]

Core kronecker product for a sequence of objects.

quimb.core.dynal(x, bases)[source]

Generate ‘dynamic decimal’ for x given dims.

Examples

>>> dims = [13, 2, 7, 3, 10]
>>> prod(dims)  # total hilbert space size
5460
>>> x = 3279
>>> drep = list(dyn_bin(x, dims))  # dyn bases repr
>>> drep
[7, 1, 4, 0, 9]
>>> bs_szs = [prod(dims[i + 1:]) for i in range(len(dims))]
>>> bs_szs
[420, 210, 30, 10, 1]
>>> # reconstruct x
>>> sum(d * b for d, b in zip(drep, bs_szs))
3279
quimb.core.gen_matching_dynal(ri, rf, dims)[source]

Return the matching dynal part of ri and rf, plus the first pair that don’t match.

quimb.core.gen_ops_maybe_sliced(ops, ix)[source]

Take ops and slice the first few, according to the length of ix and with ix, and leave the rest.

quimb.core.kron(*ops, stype=None, coo_build=False, parallel=False, ownership=None)[source]

Tensor (kronecker) product of variable number of arguments.

Parameters:
  • ops (sequence of vectors or matrices) – Objects to be tensored together.

  • stype (str, optional) – Desired output format if resultant object is sparse. Should be one of {'csr', 'bsr', 'coo', 'csc'}. If None, infer from input matrices.

  • coo_build (bool, optional) – Whether to force sparse construction to use the 'coo' format (only for sparse matrices in the first place.).

  • parallel (bool, optional) – Perform a parallel reduce on the operators, can be quicker.

  • ownership ((int, int), optional) – If given, only construct the rows in range(*ownership). Such that the final operator is actually X[slice(*ownership), :]. Useful for constructing operators in parallel, e.g. for MPI.

Returns:

X – Tensor product of ops.

Return type:

dense or sparse vector or operator

Notes

  1. The product is performed as (a & (b & (c & ...)))

Examples

Simple example:

>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[1., 1.1], [1.11, 1.111]])
>>> kron(a, b)
qarray([[1.   , 1.1  , 2.   , 2.2  ],
        [1.11 , 1.111, 2.22 , 2.222],
        [3.   , 3.3  , 4.   , 4.4  ],
        [3.33 , 3.333, 4.44 , 4.444]])

Partial construction of rows:

>>> ops = [rand_matrix(2, sparse=True) for _ in range(10)]
>>> kron(*ops, ownership=(256, 512))
<256x1024 sparse matrix of type '<class 'numpy.complex128'>'
        with 13122 stored elements in Compressed Sparse Row format>
quimb.core.kronpow(a, p, **kron_opts)[source]

Returns a tensored with itself p times

Equivalent to reduce(lambda x, y: x & y, [a] * p).

Parameters:
  • a (dense or sparse vector or operator) – Object to tensor power.

  • p (int) – Tensor power.

  • kron_opts – Supplied to kron().

Return type:

dense or sparse vector or operator

quimb.core._find_shape_of_nested_int_array(x)[source]

Take a n-nested list/tuple of integers and find its array shape.

quimb.core._dim_map_1d(sza, coos)[source]
quimb.core._dim_map_1dtrim(sza, coos)[source]
quimb.core._dim_map_1dcyclic(sza, coos)[source]
quimb.core._dim_map_2dcyclic(sza, szb, coos)[source]
quimb.core._dim_map_2dtrim(sza, szb, coos)[source]
quimb.core._dim_map_2d(sza, szb, coos)[source]
quimb.core._dim_map_nd(szs, coos, cyclic=False, trim=False)[source]
quimb.core._dim_mapper_methods
quimb.core.dim_map(dims, coos, cyclic=False, trim=False)[source]

Flatten 2d+ dimensions and coordinates.

Maps multi-dimensional coordinates and indices to flat arrays in a regular way. Wraps or deletes coordinates beyond the system size depending on parameters cyclic and trim.

Parameters:
  • dims (nested tuple of int) – Multi-dim array of systems’ internal dimensions.

  • coos (list of tuples of int) – Array of coordinate tuples to convert

  • cyclic (bool, optional) – Whether to automatically wrap coordinates beyond system size or delete them.

  • trim (bool, optional) – If True, any coordinates beyond dimensions will be deleted, overidden by cyclic.

Returns:

  • flat_dims (tuple) – Flattened version of dims.

  • inds (tuple) – Indices corresponding to the original coordinates.

Examples

>>> dims = [[2, 3], [4, 5]]
>>> coords = [(0, 0), (1, 1)]
>>> flat_dims, inds = dim_map(dims, coords)
>>> flat_dims
(2, 3, 4, 5)
>>> inds
(0, 3)
>>> dim_map(dims, [(2, 0), (-1, 1)], cyclic=True)
((2, 3, 4, 5), (0, 3))
quimb.core._dim_compressor(dims, inds)[source]

Helper function for dim_compress that does the heavy lifting.

Parameters:
  • dims (sequence of int) – The subsystem dimensions.

  • inds (sequence of int) – The indices of the ‘marked’ subsystems.

Returns:

Sequence of pairs of new dimension subsystem with marked flag {0, 1}.

Return type:

generator of (int, int)

quimb.core.dim_compress(dims, inds)[source]

Compress neighbouring subsytem dimensions.

Take some dimensions and target indices and compress both, i.e. merge adjacent dimensions that are both either in dims or not. For example, if tensoring an operator onto a single site, with many sites the identity, treat these as single large identities.

Parameters:
  • dims (tuple of int) – List of system’s dimensions - 1d or flattened (e.g. with dim_map).

  • inds (tuple of int) – List of target indices, i.e. dimensions not to merge.

Returns:

  • dims (tuple of int) – New compressed dimensions.

  • inds (tuple of int) – New indexes corresponding to the compressed dimensions. These are guaranteed to now be alternating i.e. either (0, 2, …) or (1, 3, …).

Examples

>>> dims = [2] * 10
>>> inds = [3, 4]
>>> compressed_dims, compressed_inds = dim_compress(dims, inds)
>>> compressed_dims
(8, 4, 32)
>>> compressed_inds
(1,)
quimb.core.ikron(ops, dims, inds, sparse=None, stype=None, coo_build=False, parallel=False, ownership=None)[source]

Tensor an operator into a larger space by padding with identities.

Automatically placing a large operator over several dimensions is allowed and a list of operators can be given which are then placed cyclically.

Parameters:
  • op (operator or sequence of operators) – Operator(s) to place into the tensor space. If more than one, these are cyclically placed at each of the dims specified by inds.

  • dims (sequence of int or nested sequences of int) – The subsystem dimensions. If treated as an array, should have the same number of dimensions as the system.

  • inds (tuple of int, or sequence of tuple of int) – Indices, or coordinates, of the dimensions to place operator(s) on. Each dimension specified can be smaller than the size of op (as long as it factorizes it).

  • sparse (bool, optional) – Whether to construct the new operator in sparse form.

  • stype (str, optional) – If sparse, which format to use for the output.

  • coo_build (bool, optional) – Whether to build the intermediary matrices using the 'coo' format - can be faster to build sparse in this way, then convert to chosen format, including dense.

  • parallel (bool, optional) – Whether to build the operator in parallel using threads (only good for big (d > 2**16) operators).

  • ownership ((int, int), optional) – If given, only construct the rows in range(*ownership). Such that the final operator is actually X[slice(*ownership), :]. Useful for constructing operators in parallel, e.g. for MPI.

Returns:

Operator such that ops act on dims[inds].

Return type:

qarray or sparse matrix

See also

kron, pkron

Examples

Place an operator between two identities:

>>> IZI = ikron(pauli('z'), [2, 2, 2], 1)
>>> np.allclose(IZI, eye(2) & pauli('z') & eye(2))
True

Overlay a large operator on several sites:

>>> rho_ab = rand_rho(4)
>>> rho_abc = ikron(rho_ab, [5, 2, 2, 7], [1, 2])  # overlay both 2s
>>> rho_abc.shape
(140, 140)

Place an operator at specified sites, regardless of size:

>>> A = rand_herm(5)
>>> ikron(A, [2, -1, 2, -1, 2, -1], [1, 3, 5]).shape
(1000, 1000)

Create a two site interaction (note the coefficient jx we only need to multiply into a single input operator):

>>> Sx = spin_operator('X')
>>> jx = 0.123
>>> jSxSx = ikron([jx * Sx, Sx], [2, 2, 2, 2], [0, 3])
>>> np.allclose(jSxSx, jx * (Sx & eye(2) & eye(2) & Sx))
True
quimb.core._permute_dense(p, dims, perm)[source]

Permute the subsytems of a dense array.

quimb.core._permute_sparse(a, dims, perm)[source]

Permute the subsytems of a sparse matrix.

quimb.core.permute(p, dims, perm)[source]

Permute the subsytems of state or opeator.

Parameters:
  • p (vector or operator) – State or operator to permute.

  • dims (tuple of int) – Internal dimensions of the system.

  • perm (tuple of int) – New order of indexes range(len(dims)).

Returns:

pp – Permuted state or operator.

Return type:

vector or operator

See also

pkron

Examples

>>> IX = speye(2) & pauli('X', sparse=True)
>>> XI = permute(IX, dims=[2, 2], perm=[1, 0])
>>> np.allclose(XI.A, pauli('X') & eye(2))
True
quimb.core.pkron(op, dims, inds, **ikron_opts)[source]

Advanced, padded tensor product.

Construct an operator such that op acts on dims[inds], and allow it to be arbitrarily split and reversed etc., in other words, permute and then tensor it into a larger space.

Parameters:
  • ops (matrix-like or tuple of matrix-like) – Operator to place into the tensor space.

  • dims (tuple of int) – Dimensions of tensor space.

  • inds (tuple of int) – Indices of the dimensions to place operators on. If multiple operators are specified, inds[1] corresponds to ops[1] and so on.

  • sparse (bool, optional) – Whether to construct the new operator in sparse form.

  • stype (str, optional) – If sparse, which format to use for the output.

  • coo_build (bool, optional) – Whether to build the intermediary matrices using the 'coo' format - can be faster to build sparse in this way, then convert to chosen format, including dense.

Returns:

Operator such that ops act on dims[inds].

Return type:

operator

See also

ikron, permute

Examples

Here we take an operator that acts on spins 0 and 1 with X and Z, and transform it to act on spins 2 and 0 – i.e. reverse it and sandwich an identity between the two sites it acts on.

>>> XZ = pauli('X') & pauli('Z')
>>> ZIX = pkron(XZ, dims=[2, 3, 2], inds=[2, 0])
>>> np.allclose(ZIX, pauli('Z') & eye(3) & pauli('X'))
True
quimb.core.ind_complement(inds, n)[source]

Return the indices below n not contained in inds.

quimb.core.itrace(a, axes=(0, 1))[source]

General tensor trace, i.e. multiple contractions, for a dense array.

Parameters:
  • a (numpy.ndarray) – Tensor to trace.

  • axes ((2,) int or (2,) array of int) –

    • (2,) int: Perform trace on the two indices listed.

    • (2,) array of int: Trace out first sequence of indices with second sequence indices.

Returns:

The tensor remaining after tracing out the specified axes.

Return type:

numpy.ndarray

See also

trace, partial_trace

Examples

Trace out a single pair of dimensions:

>>> a = randn(2, 3, 4, 2, 3, 4)
>>> itrace(a, axes=(0, 3)).shape
(3, 4, 3, 4)

Trace out multiple dimensions:

>>> itrace(a, axes=([1, 2], [4, 5])).shape
(2, 2)
quimb.core._partial_trace_dense(p, dims, keep)[source]

Perform partial trace of a dense matrix.

quimb.core._trace_lose(p, dims, lose)[source]

Simple partial trace where the single subsytem at lose is traced out.

quimb.core._trace_keep(p, dims, keep)[source]

Simple partial trace where the single subsytem at keep is kept.

quimb.core._partial_trace_simple(p, dims, keep)[source]

Simple partial trace made up of consecutive single subsystem partial traces, augmented by ‘compressing’ the dimensions each time.

quimb.core.partial_trace(p, dims, keep)[source]

Partial trace of a dense or sparse state.

Parameters:
  • p (ket or density operator) – State to perform partial trace on - can be sparse.

  • dims (sequence of int or nested sequences of int) – The subsystem dimensions. If treated as an array, should have the same number of dimensions as the system.

  • keep (int, sequence of int or sequence of tuple[int]) – Index or indices of subsytem(s) to keep. If a sequence of integer tuples, each should be a coordinate such that the length matches the number of dimensions of the system.

Returns:

rho – Density operator of subsytem dimensions dims[keep].

Return type:

qarray

See also

itrace

Examples

Trace out single subsystem of a ket:

>>> psi = bell_state('psi-')
>>> ptr(psi, [2, 2], keep=0)  # expect identity
qarray([[ 0.5+0.j,  0.0+0.j],
        [ 0.0+0.j,  0.5+0.j]])

Trace out multiple subsystems of a density operator:

>>> rho_abc = rand_rho(3 * 4 * 5)
>>> rho_ab = partial_trace(rho_abc, [3, 4, 5], keep=[0, 1])
>>> rho_ab.shape
(12, 12)

Trace out qutrits from a 2D system:

>>> psi_abcd = rand_ket(3 ** 4)
>>> dims = [[3, 3],
...         [3, 3]]
>>> keep = [(0, 0), (1, 1)]
>>> rho_ac = partial_trace(psi_abcd, dims, keep)
>>> rho_ac.shape
(9, 9)
quimb.core.nmlz[source]

Alias for normalize().

quimb.core.tr[source]

Alias for trace().

quimb.core.ptr[source]

Alias for partial_trace().

quimb.core.csr_mulvec_wrap(fn)[source]

Dispatch sparse csr-vector multiplication to parallel method.

quimb.core.sp_mulvec_wrap(fn)[source]

Scipy sparse doesn’t call __array_finalize__ so need to explicitly make sure qarray input -> qarray output.