quimb.experimental.belief_propagation.l2bp¶
Classes¶
Lazy (as in multiple uncontracted tensors per site) 2-norm (as in for |
Functions¶
|
Estimate the norm squared of |
|
Compress |
Module Contents¶
- class quimb.experimental.belief_propagation.l2bp.L2BP(tn, site_tags=None, damping=0.0, update='sequential', local_convergence=True, optimize='auto-hq', **contract_opts)¶
Bases:
quimb.experimental.belief_propagation.bp_common.BeliefPropagationCommon
Lazy (as in multiple uncontracted tensors per site) 2-norm (as in for wavefunctions and operators) belief propagation.
- Parameters:
tn (TensorNetwork) – The tensor network to form the 2-norm of and run BP on.
site_tags (sequence of str, optional) – The tags identifying the sites in
tn
, each tag forms a region, which should not overlap. If the tensor network is structured, then these are inferred automatically.damping (float, optional) – The damping parameter to use, defaults to no damping.
update ({'parallel', 'sequential'}, optional) – Whether to update all messages in parallel or sequentially.
local_convergence (bool, optional) – Whether to allow messages to locally converge - i.e. if all their input messages have converged then stop updating them.
optimize (str or PathOptimizer, optional) – The path optimizer to use when contracting the messages.
contract_opts – Other options supplied to
cotengra.array_contract
.
- backend¶
- damping¶
- local_convergence¶
- update¶
- optimize¶
- contract_opts¶
- touched¶
- _abs¶
- _sum¶
- _transpose¶
- _conj¶
- _normalize¶
- _symmetrize¶
- _distance¶
- messages¶
- contraction_tns¶
- iterate(tol=5e-06)¶
- normalize_messages()¶
Normalize all messages such that for each bond <m_i|m_j> = 1 and <m_i|m_i> = <m_j|m_j> (but in general != 1).
- contract(strip_exponent=False)¶
Estimate the contraction of the norm squared using the current messages.
- partial_trace(site, normalized=True, optimize='auto-hq')¶
- compress(tn, max_bond=None, cutoff=5e-06, cutoff_mode='rsum2', renorm=0, lazy=False)¶
Compress the state
tn
, assumed to matched this L2BP instance, using the messages stored.
- quimb.experimental.belief_propagation.l2bp.contract_l2bp(tn, site_tags=None, damping=0.0, update='sequential', local_convergence=True, optimize='auto-hq', max_iterations=1000, tol=5e-06, strip_exponent=False, info=None, progbar=False, **contract_opts)¶
Estimate the norm squared of
tn
using lazy belief propagation.- Parameters:
tn (TensorNetwork) – The tensor network to estimate the norm squared of.
site_tags (sequence of str, optional) – The tags identifying the sites in
tn
, each tag forms a region.damping (float, optional) – The damping parameter to use, defaults to no damping.
update ({'parallel', 'sequential'}, optional) – Whether to update all messages in parallel or sequentially.
local_convergence (bool, optional) – Whether to allow messages to locally converge - i.e. if all their input messages have converged then stop updating them.
optimize (str or PathOptimizer, optional) – The contraction strategy to use.
max_iterations (int, optional) – The maximum number of iterations to perform.
tol (float, optional) – The convergence tolerance for messages.
strip_exponent (bool, optional) – Whether to strip the exponent from the final result. If
True
then the returned result is(mantissa, exponent)
.info (dict, optional) – If specified, update this dictionary with information about the belief propagation run.
progbar (bool, optional) – Whether to show a progress bar.
contract_opts – Other options supplied to
cotengra.array_contract
.
- quimb.experimental.belief_propagation.l2bp.compress_l2bp(tn, max_bond, cutoff=0.0, cutoff_mode='rsum2', max_iterations=1000, tol=5e-06, site_tags=None, damping=0.0, update='sequential', local_convergence=True, optimize='auto-hq', lazy=False, inplace=False, info=None, progbar=False, **contract_opts)¶
Compress
tn
using lazy belief propagation, producing a tensor network with a single tensor per site.- Parameters:
tn (TensorNetwork) – The tensor network to form the 2-norm of, run BP on and then compress.
max_bond (int) – The maximum bond dimension to compress to.
cutoff (float, optional) – The cutoff to use when compressing.
cutoff_mode (int, optional) – The cutoff mode to use when compressing.
max_iterations (int, optional) – The maximum number of iterations to perform.
tol (float, optional) – The convergence tolerance for messages.
site_tags (sequence of str, optional) – The tags identifying the sites in
tn
, each tag forms a region. If the tensor network is structured, then these are inferred automatically.damping (float, optional) – The damping parameter to use, defaults to no damping.
update ({'parallel', 'sequential'}, optional) – Whether to update all messages in parallel or sequentially.
local_convergence (bool, optional) – Whether to allow messages to locally converge - i.e. if all their input messages have converged then stop updating them.
optimize (str or PathOptimizer, optional) – The path optimizer to use when contracting the messages.
lazy (bool, optional) – Whether to perform the compression lazily, i.e. to leave the computed compression projectors uncontracted.
inplace (bool, optional) – Whether to perform the compression inplace.
info (dict, optional) – If specified, update this dictionary with information about the belief propagation run.
progbar (bool, optional) – Whether to show a progress bar.
contract_opts – Other options supplied to
cotengra.array_contract
.
- Return type: